Normal Mode Coordinates

In cartesian coordinates, expanding the potential operator around a point X,
the Hamiltonian can be written
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where Vj is V(x0) and the derivatives are evaluated at xg. If x¢ is at a minimum
energy point, then
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Now use mass-scaled coordinates relative to xq
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so that the Hamiltonian is
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where H;; is the mass-weighted Hessian
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Normal coordinates, q are defined by an orthonormal transformation

ji = ZDaiQa (6)

D'D=1 (7)
where the matrix D contains the eigenvectors of the Hessian,
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For reasons that will be clear below, the diagonal eigenvalue matrix w can be
written
wig = widy (9)

As the eigenvectors are orthonormal,
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and so
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Comparing this to the Hamiltonian for a harmonic oscillator,
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the second and third terms have the form of a set of harmonic oscillators of unit
mass.

A neater expression for the normal mode Hamiltonian, Eq. (11), can be
made by a final transformation to dimensionless coordinates
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Notes

1. If atomic units are used in which A = 1 this can be written

H(Q) = VO"‘(Z 3Q2+Q2> (15)

and the frequency has units of energy.

2. In the GAUSSIAN program, the normal modes are obtained as a set of or-
thonormal vectors. These are the columns of D. To transform between cartesian
and dimensionless coordinates,

Q = D(x—xp) (16)
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where the transformation matrices are no longer orthonormal, but related to
the Hessian eigenvectors by

Inserting constants, if x is in A,

vmhwe m;  hwg m;  hwe
——— = 15.4644 —— =0.172 2
I 540 [amu] [eV] 0.17 [amu] [cm 1] (20)



