
Normal Mode Coordinates

In cartesian coordinates, expanding the potential operator around a point x0,
the Hamiltonian can be written
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where V0 is V (x0) and the derivatives are evaluated at x0. If x0 is at a minimum
energy point, then
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Now use mass-scaled coordinates relative to x0
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so that the Hamiltonian is
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where Hij is the mass-weighted Hessian
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Normal coordinates, q are defined by an orthonormal transformation

x̃i =
∑
α

Dαiqα (6)
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where the matrix D contains the eigenvectors of the Hessian,

DHDT = w . (8)

For reasons that will be clear below, the diagonal eigenvalue matrix w can be
written
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and so
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Comparing this to the Hamiltonian for a harmonic oscillator,
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the second and third terms have the form of a set of harmonic oscillators of unit
mass.

A neater expression for the normal mode Hamiltonian, Eq. (11), can be
made by a final transformation to dimensionless coordinates
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Notes

1. If atomic units are used in which ~ = 1 this can be written
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and the frequency has units of energy.
2. In the GAUSSIAN program, the normal modes are obtained as a set of or-
thonormal vectors. These are the columns of D. To transform between cartesian
and dimensionless coordinates,

Q = D̃(x− x0) (16)

x = x0 + D̃′Q (17)

where the transformation matrices are no longer orthonormal, but related to
the Hessian eigenvectors by
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Inserting constants, if x is in Å,
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