
1

Crystal Predictor v2.4.3 Manual

Contents
Contents .. 1

Introduction ... 3

Guide to CrystalPredictor Workflow .. 4

Stage 0: Generate LAMS .. 4

Stage 1: Production Run ... 5

Stage 1.1: Analyse .. 5

Stage 1.2: Clustering ... 6

Stage 2: Minimise ... 6

Workflow .. 7

Input Files ... 8

input.in ... 8

NON_UNIFORM_LAM_RELEVANCE ... 10

lam_intra .. 11

potential.in ... 12

Output Files ... 13

crystals.out ... 13

crystals_stable.out ... 13

In previous versions: ... 13

CrystPred_log.out ... 14

starting_crystals.out.. 14

global_statistics.out ... 14

restart.in, current_restart.in and restart.message .. 14

Analyse_log.out ... 14

Utility Programs .. 15

Scan ... 15

Python utilities .. 16

Scaling... 18

References ... 18

Appendix ... 19

NonNAG version .. 19

Installation folder .. 19

2

Software dependencies.. 20

3

Introduction
CrystalPredictor is a program designed to predict the crystal energy landscape for a molecule,

given its 2D molecular formula. There are many different forms (polymorphs) for any molecule

to crystallise into, each with their own set of physical properties; CrystalPredictor seeks to rank

these possible crystals by their lattice energies, to give a list of sensible crystal structures.

CrystalPredictor is designed to provide a semi-rigorous model for calculating the lattice energy

of crystals such that global optimisation techniques can be applied to locate all relevant minima

with an efficient use of computational resources. Structure candidates can be further refined

using CrystalOptimizer as part of a more general Crystal Structure Prediction workflow. The I/O

of CrystalPredictor is summarised in Figure 1.

Figure 1, I/O summary

Input files used in CrystalPredictor, as shown in Figure 1, are used to specify the system of

interest as well as define optimisation specifications. A basic guide to setting up these files is

given in the following section.

The overall CrystalPredictor algorithm has two major stages in its workflow of first generating

LAMS (stage 0) to calculate the intramolecular energy landscape followed by a production run

(stage 1) to sample and then minimise points on the lattice energy landscape. The outputs given

by CrystalPredictor provide information on the results of the optimisation, as well as files

describing crystal structures at each minima.

4

Nomenclature: words in bold define files or directories while words in italic define executables

or utilities.

Guide to CrystalPredictor Workflow

Stage 0: Generate LAMS
Three input files (input.in, lam_intra and potential.in) are required to generate Local

Approximate Models (LAMS). In input.in each molecular type in the asymmetric unit cell is

specified in addition to the selection and ranges of internal degrees of freedom. The file name

lam_intra is also specified here and can be changed (note for co-crystals etc. additional

lam_intra files will be required to define each structure and must be named separately). The

space groups to be searched in, along with other optimisation parameters are also specified in

input.in as shown in the example file. The optimisation parameters are divided into two

categories namely SIMULATION and DETAILS. In the first category the cut-off distances as

well as pressure and hydrogen distances are specified. In the second category the minimum and

maximum values of unit cell’s angles and lengths are defined. Also, the maximum values of

density (Kg/m
3
), intramolecular, intermolecular energy (kJ/mol) and minimisations steps are

determined, respectively. The last line of input.in (polym_region) specifies the region in which

local minimum are collected. The value of this line refers to the energy difference (in kJ/mole)

between the global minimum and the highest energy polymorph under consideration.

lam_intra contains the level of theory and the ranges for degrees of freedom in which LAMS are

generated. For ease of use, the range (finish-start) covered by the LAMS should be an integer

multiple of the interval. The range and interval specified in lam_intra will determine the co-

ordinates of each LAM, while the range in input.in will determine the regions of these LAMS

that will be searched. lam_intra also contains information on atom types, atom number, point

charges and z-matrix as shown in the example file. Specified internal degrees of freedom should

also be moved to the end of the lam_intra file in the order that they are defined at the top of the

file such that CrystalPredictor can correctly identify them. The values of the point charges and

crystal structure given in lam_intra should describe the structure and point charges of a

molecule in the gas phase confirmation as calculated using software such as GAUSSIAN.

The potential.in file contains information on empirical repulsive/dispersive interactions for each

different atomic molecular type. The chosen force field and associated parameters can be input

as shown in the example input file.

Once all files are prepared, LAMS can be generated by running the program LAM_GENERATOR

from the folder containing these input files. LAM_GENERTOR will then prompt several

questions, if you would like to modify the files generated by LAM_GENERATOR before running

then input ‘y’ when asked ‘do you want to set up the directories initially?’, modify where

required and then run LAM_GENERATOR again, this time replying ‘n’ to the same question.

Once LAMs are generated, run LAM_GENERATOR one more time to analyse the output and

create the file new_lam_intra.

If zero internal degrees of freedom are specified (i.e., a “rigid” search), LAMS do not need to be

generated, and stage 0 should be omitted. If flexible degrees of freedom are being considered the

5

new_lam_intra file from stage 0 must be concatenated with the original lam_intra file. To

append the new_lam_intra file at the bottom of lam_intra execute:

$ cat new_lam_intra >> lam_intra

The new file can be named differently to preserve the original lam_intra file, but this name will

have to be included in input.in. If stage 0 was omitted then lam_intra should contain the point

charges and gas phase confirmation as shown in the example input file. These can be calculated

in standard commercial software such as GAUSSIAN.

In addition, several other commands can be included at the end of the input.in file, such as

DOING_ANALYSE and DOING_CLUSTER X. These commands will be described in the

following sections.(explain CASCADE and NON_UNIFORM)

Stage 1: Production Run
CrystalPredictor requires at least 3 processors: 1 bookkeeper, 1 Generator, and the remaining

processors being workers. Tests show that the code scales well, up to at least 96 cores; see Figure

2. To begin the production run submit the runCrystPred.csh script:

 $ qsub runCrystPred.csh

The script can be submitted with the files input.in and potential.in as described in stage 0 in the

same directory, along with lam_intra. Being a parallel code, the user can specify the number of

processors to be used during the search. Following the completion of a production run further

minimisations can be carried out by re-submitting runCrystPred.csh with the file restart.in

(produced from the previous batch of minimisations) in the working directory. This will continue

the program from the set of Sobol points that the previous batch finished at. If resubmitting due

to failure, current_restart.in contains the set of Sobol points reached in each space group after

the latest set of 100,000 minimisatons. current_restart.in can be copied to restart.in to avoid

reminimising the same Sobol points.

The term DOING_ANALYSE can be included at the end of the input.in to automate stage 1.1

described below. In addition, the term DOING_CLUSTER X (where “X” is the location of the

COMPACK file used to cluster structures) can be included along with DOING_ANALYSE to

automate stage 1.2. If carrying out batch runs, the DOING_ANALYSE and DOING_CLUSTER

keywords should only be included in the final run so to avoid wasting computational resources.

Stage 1.1: Analyse
Once all minimisations are complete, the results can be analysed by submitting runAnalyse.csh

with the input files input.in, lam_intra and potential.in, as well as crystals_stable.in produced

by CrystalPredictor in the working directory.

$ qsub runAnalyse.csh

This will produce the directory unique_pool/ containing the structures of each minima ranked in

ascending order of energy. Two format types can be found inside unique pool for each minimum,

namely the minimum_X_Y.spf and minimum_X_Y.pdb files, where X is the rank of the

structure and Y is the number within the cluster (i.e. if the same structure is found with different

unit cells, two files will be produced with different Y).

6

Stage 1.2: Clustering

After analysing the results, duplicates can be removed from the list of candidates by submitting:

$ qsub runClustering.csh

It is important that unique_pool/, input and Analyse_log.out (or CrystPred_log.out if the

keyword DOING_ANALYSE was used in the production run) in the working directory. input

should contain the location of the compack executable used to compare crystal structures.

Optionally, the second line of input may contain, in the following order, tolerances for the

energy and density cut-offs for comparing crystal structures, plus a global energy cut-off. The

default tolerances for each of these are set as 3.0, 50.0 and 100.0, respectively. In the input file

the location of runfor executable is also specified alongside with the argument that determines

the time (in seconds) for which the Clustering.csh script runs. runfor executable is necessary in

order to terminate (by force) the Clustering.csh script. Successful execution of Clustering.csh

will produce the final list of candidate structures in unique_pool/clustered/.

Note that for the correct execution of Clustering.csh directories that contain the ##.res files

should exist. The number of these directories must be equal to the number of the minimised

structures. In the current version of CrystalPredictor the creation of directories that host the

##.res files, to be clustered, is done automatically. In older versions the creation of directories

was achieved manually by executing the script: reorder_unique_pool.sh.

Stage 2: Minimise
It is sometimes necessary to minimise a reference structure using the same computational model

as implemented in the search to see whether the reference structure has been found. Minimise can

be used to analyse the ability of CrystalPredictor’s energy model at predicting known

experimental forms of the compound of interest, and also identify any experimental crystal

structures found during the production run. Minimise can be executed using the same files as

required for stage 1 plus the additional file expcrys.pdb which contains the user supplied

experimental structure for the compound of interest. expcrys.pdb is the reference crystal

structure in .pdb format. (If you have a .res file, you can open it using CCDC Mercury and save

it as a .pdb. Minimise can be executed in the front end by the following command:

$./Minimise

Minimise will then complete one optimisation with the experimental structure as an initial point.

In the case that a rigid molecule is being studied, the gas phase confirmation from lam_intra is

“pasted” in the crystal using OptimalPaste (visit the README file in /OptimalPaste/ if unsure

how to do this). The output of Minimise (located in Minimisation_log.out) can then be

compared with generated structures from CrystalPredictor to determine in what position the

experimental structure was ranked. Comparisons can be made with the rank of all possible

structures by extracting Utot from Minimisation_log.out

Note that special care must be taken that the atom ordering is the same as the zmatrix in the

LAM database. (It is essential that the file expcrys.pdb matches the same atom labels and

ordering as found in lam_intra).

7

Workflow

Stage Tasks Input Files Output files

0: Generate the LAMs

[$./LAM_GENERATOR]

When prompted, answer yes to

“is this the first uniform run”

Concatenate new_lam_intra with lam_intra

[$ cat lam_intra new_lam_intra > lam_intra]

CASCADE

input.in
(optional keyword: DOING_CASCADE)

potential.in

lam_intra

new_lam_intra

0.1 (optional, to

produce non uniform

LAMS after initial

uniform LAMS are

generated)

[$./LAM_GENERATOR]

When prompted, answer no to this “is this the first

uniform run”

Concatenate new_lam_intra with lam_intra

Drop “new_” in

new_NON_UNIFORM_LAM_RELEVANCE

before production run

[$ mv

new_NON_UNIFORM_LAM_RELEVANCE

NON_UNIFORM_LAM_RELEVANCE]

input.in

(optional keyword: DOING_CASCADE)

(required keyword: NON_UNIFORM)

potential.in

lam_intra

new_lam_intra

new_NON_UNIFORM_LAM

_RELEVANCE

1: Production run

[$ qsub runCrystPred.csh]

Production runs can be performed in batches as

long as restart.in is specified in the working

directory.

(restart.in if continuing from previous runs)

input.in (optional keywords:

DOING_ANALYSE,

DOING_CLUSTER)

potential.in

lam_intra

(optional files:

NON_UNIFORM_LAM_RELVANCE)

CrystPred_log.out,

crystals.out,

crystals_stable.out,

starting_crystals.out,

global_statistics.out,

restart.in, current_restart.in,

restart.message.

1.1: Generate the

polymorphic

landscape

[$ qsub runAnalyse.csh]

Ranking minima in ascending order of energy

input.in

potential.in

lam_intra

crystals_stable.out

(optional files:

NON_UNIFORM_LAM_RELVANCE)

Analyse_log.out and

unique_pool/ containing .pdb,

.spf and .res files

1.2: Cluster duplicate

structures

[$ qsub runCluster.csh]

Clusters duplicate structures

unique_pool/

Analyse_log.out (or CrystPred_log.out

if DOING_ANALYSE keyword was

used)

input

Clustering_log.out,

unique_pool/clustered

containing .res files and

CrystalPredictor_energy

2: Identifying

experimental form in

polymorphic

landscape

[$./Minimise]

Compares experimental structure with the

structures generated from CrystalPredictor

input.in

potential.in

lam_intra

expcrys.pdb

crystals_stable.out

Minimisation_log.out,

minimise_initial_strucutre(.p

db/.spf) and

minimise_final_strucutre

(.pdb/.spf)

8

Input Files

input.in

MOLECULAR TYPES 1 ! add extra “TYPE” sections for each new molecule

--

TYPE MOL_XXVI

1 !Number of this type in asymmetric unit cell

62 !Number of atoms in the molecule

lam_intra !Name of LAM database file

7 !N flexible degrees of freedom (<= those in mol file)

dih9 -190 -130 !N lines in the format: degree name - lower bound - upper bound

dih10 -195 -165

dih11 20 80

dih21 -125 -95

dih31 20 80

dih32 -195 -165

dih33 -370 -310

--

SPACE_GROUPS

P1 P-1 P21 P21/C P21212 P212121 PNA21 PCA21 PBCA PBCN

C2/C CC C2 PC CM P21/M C2/M P2/C C2221 PMN21

CMC21 ABA2 FDD2 IBA2 PNNA PCCN PBCM PNNM PMMN PNMA

CMCM CMCA FDDD IBAM P41 P43 I-4 P4/N P42/N I4/M

I41/A P41212 P43212 P-421C I-42D P31 P32 R3 P-3 R-3

P3121 P3221 R3C R-3C P61 P63 P63/M P213 PA-3 P2221 PBA2

END_SPACE_GROUPS

--

SIMULATION

15.00d0 !rcut in A

12.0d0 !rcut_quin_spl in A

12.0d0 !rcut_elec in A

1.d-10 !Ewald_accur_minim relative accuracy in Ewald summation in minimisation

1.0E-5 !pressure in Pa

no !stand_hyd_dist =yes standardise hydrogen distances, =no leave unaltered (neutron)

no !short_hyd_dis =yes foreshorten H positions by 0.1A (after standardisation)

SEARCH

50.d0 50.d0 50.d0 !ANG_MIN_SRCH in ^o, minimum cell angle

130.d0 130.d0 130.d0 !ANG_MAX_SRCH in ^o, maximum cell angle

3.d0 3.d0 3.d0 !LEN_MIN_SRCH in A, minimum cell length

40.d0 40.d0 40.d0 !LEN_MAX_SRCH in A, maximum cell length

300.d0 900.d0 !DENSITY_SRCH in kg/m3, minimum cell density

50.0d0 !U_INTER_SRCH in kJ/mol, maximum intermolecular energy

40.d0 !U_INTRA_SRCH in kJ/mol, maximum intramolecular energy

0.4d0 !W_SRCH minimum deformation parameter

1000000 !NO_MINS_MAX maximum number of minimisations

50.d0 !polym_region in kJ/mol region of polymorphism, structures outside rejected

Uintra_cap 2 -2478.04020017

9

The values for optimisations in this example make for good defaults. The Space Groups are

searched according to their ratios in the 2016 CCDC distribution; for example, P-1 and P21/c are

searched more frequently than others. To search the groups uniformly, put “uni” after

SPACE_GROUPS, and to define your own ratios put “def” after SPACE_GROUPS, and list the

groups and their ratios on separate lines.

Optional Parameters in input.in

Uintra_cap

Including the "Uintra_cap X" or “Uintra_cap X Y” keyword at the end of your input.in file

allows you to control the levelling out of the intramolecular energy surface.

X=0

Uintra=0 at the lowest energy LAM, and Uintra can be a negative number. There is no control of

how low intramolecular energy can go.

X=1

Intramolecular energy can’t be less than 0 (the energy of the lowest energy LAM.). This is the

default setting

X=2

By far the most preferable, where Y follows, and Y is the gas phase minimum energy, meaning

intramolecular energy can't be lower than the gas phase minimum. This change was necessary as

when LAMs are evaluated at highly strained points (for instance, if two benzene rings are

pointed at each other), then the gradients for rotating away from the strained conformation are

huge, and within the space of one grid increment, can disappear to unrealistically low energy. An

alternative way of avoiding this situation would be to not evaluate LAMS at highly strained

points; grids could be setup to miss torsions at 180 degrees.

REJECT_LIST

Provide output file for each slave "slave_XXX_rejection_list.out" that outputs data on the

reasons for rejected starting points, which might guide the user in making the run more efficient,

e.g. if there’s loads of unsound_density, maybe consider using a density range.

TRACK_MIN

.pdb files, and accompanying energy data are output at every stage of minimisation.

VERIFY_GRAD

Enable "Verify" E04Uff keyword for the experimental minimisation
1
.

DOING_ANALYSE

Analyse is performed as part of CrystPred.

10

DOING_CLUSTER

Clustering is performed as part of CrystalPredictor, clustering is specified as DOING_CLUSTER

X where “X” is the location of the compack executable.

NON_UNIFORM

Enables the selection of Non Uniform LAMs this will require the

NON_UNIFORM_LAM_RELEVANCE file as described below.

NON_UNIFORM_LAM_RELEVANCE
Non Uniform, or adaptive, LAMs can be automatically generated using LAM_GENERATOR,

once a uniform set of LAMS has already been generated. This is explained in more detail in a

recent paper
2
.

NON_UNIFORM_LAM_RELEVANCE has the following format:

00001 00649 00650 00651 00652 00653 00688 00xx yyy etc

00002 00649 00650 00651 00653 00654 00655 00656 00657 00658 00698 000xx yyy etc

Where the first number refers to the number of the uniform LAM, and the remaining numbers on

the line refer to the number of the non-uniform LAMs that are close enough to that point to be

worth considering.

The program "LAM_GENERATOR" automates making this, which responds to user input. For

example asking for cutoff, where "cutoff" is the highest acceptable difference in energy predicted

by two LAMs to not necessitate a new LAM. NON_UNIFORM. This is currently only available

for Z=1 runs.

11

lam_intra

Intramolecular energy/gradients/hessian/charges for:

MOLECULE NAME

Generated at level of theory:

Level_of_theory/Basis_sets

Across No_of_dimensions dimensional grid: No_of_LAMs

 start interval finish

tor1 grid_lower_bound grid_inc grid_higher_bound

tor2 …

From starting Z-matrix:

!atom type, atom_num, point charge, the remainder is the zmatrix in traditional form

C1 1 -0.130092

C1 2 -0.155270 1 cc2

C1 3 -0.111365 2 cc3 1 ccc3

C1 4 -0.122888 3 bond4 2 ang4 1 dih4

…

 cc2 1.3856

 cc3 1.3812

 ccc3 119.7184

 cc4 1.3903

 ccc4 120.9058

 dih4 0.7519

…

**

12

potential.in

POTENTIAL MODEL

--

------------------intermolecular soft forces -----------------

--

Name of atom |Name of atom |Soft potential type

A (in kj/mol) |\rho (in A) |C (in kJ*A^6/mol)

\epsilon (in kj/mol)|\sigma (in A) |

--------------------|--------------------|--------------------|

C1 C1 exp-6

369746.1595 0.277778 2439.820883

H1 H1 exp-6

11971.10223 0.267380 136.4011887

H2 H2 exp-6

2263.310395 0.214592 21.49877589

N1 N1 exp-6

254530.1798 0.264550 1378.406323

O1 O1 exp-6

230065.9193 0.252525 1123.59921

Cl1 Cl1 exp-6

924678.8535 0.284900 7740.5164

13

Output Files

crystals.out

This is a file that contains information about all the crystal structures that were generated and

minimised (even failed runs, unstable minima, structures that exceed density and cell

specifications etc.) on separate lines.

The format is:

Space group Number, info, number of points generated, 1, number of asymmetric

molecules(nmolasm), maximum number of minimisations to attempt (hard coded as 6),

hist_nattmin(1:6), molecule type, Utot, Uintra, Uvdw, Uelec, Ureal, Urec, Umol_correction,

Usurface, Upre, density, volume, time_to_complete, a, b, c, α, β γ,

molecule_center_of_mass (3 values for x, y and z), φ, θ, ψ, flexible degrees_of_freedom.

All energy units are in kJ/mol, density in kg/m
3
 and angles in radians. Info is the value of IFAIL

for the final minimisation, given in the E04UFF manual. Hist_nattmin(1:6) is the IFAIL results

of the attempted minimisations (6 values). Molecule type is positive for the identity, and negative

for the inverted molecule. A, b, c, α, β γ, are the unit cell lengths and angles, and the final values

describe the molecule(s); center of mass, orientation (euler angles φ, θ, ψ), and the values for

any flexible degrees of freedom, for each molecule in turn.

crystals_stable.out

This is a file that displays all the successsful and stable minimisations. This file will be used for

subsequent clustering. Each line is a separate minimisation with the following format:

Minimisation_number, SpaceGroup, nmolasm, moltype, Utot, UnitCellVolume,

a, b, c, α, β, γ,

 nmolasm*molecule_center_of_mass (3 values for x, y and z), φ, θ,

ψ, flexible degrees_of_freedom.

Where a, b, c, α, β, γ, are the lattice lengths and angles respectively, then follows the fractional

coordinates (molecule_center_of_mass(x,y,z)), orientation, and values for the flexible degrees of

freedom for each of the molecule’s in the asymmetric unit in turn.

In crystals.out and crystals_stable.out energy is calculated in kJ/mol, density in kg/m
3
, volume

in Å
3
 and angles in radians.

In previous versions:

NB: before restarting rename the crystals.out and crystals_stable.out files as they will be

overwritten with the new results.

You can then write all the crystal(_stable).out files into one main file using:

[$ cat crystals.out1 crystals.out2 crystals.out3 > crystals.out]

Version 2.3:

14

A new feature of V2.3 is that the proceeding crystals_stable.out is read in, and outputted at the

end of the run, sorted by energy, so renaming it is no longer necessary.

CrystPred_log.out

CrystalPredictor log file used mainly for troubleshooting and timings.

Contains:

- Input data

- Search and Minimisation data

- Cluster data

- Space group propensity

starting_crystals.out

A new feature of CrystalPredictor_v2.3 is that the starting positions of calculations are

retained in the file “starting_crystals.out”, with a similar format to crystals.out. This can be used

to identify the shape of the lattice energy surface, and potentially estimate solid-solid transition

reaction coordinates.

global_statistics.out

Optimisation and search statistics as function of the number of the minimisations. It prints a

statement whenever the global minimum is updated along with the energy, unit cell volume

space group and unit cell dimensions.

restart.in, current_restart.in and restart.message

If the search was not complete, it is possible to resubmit CrystalPredictor from the point where it

finished using the restart.in file. If restart.in is in the same directory as CrystalPredictor is

submitted from, then the sobol sequence will be continued from the last point recorded in

restart.in. To begin a new CrystalPredictor run from the start of the sobol sequence remove the

file restart.in.

current_restart.in records the position in the sobol sequence every 100,000 sobol points. To

restart from this point mv current_restart.in to restart.in.

restart.message tells the user if restart.in was used to initialise current CrystalPredictor

production run

Analyse_log.out

The Analyse log file is mainly used for troubleshooting.

Contains:

- Input data

- Space group propensities

- Global Optimisation Statistics

- Cluster data

Clustering_log.out

15

Minimisation_log.out

Log output which has the energy and density of the minimised structure which you can try to

match with a structure in the search.

minimise_final_structure.pdb and minimise_final_structure.spf - crystal structure files

minimise_initial_structure.pdb and minimise_initial_structure.spf – crystal structure of

starting point: use to check how well OptimalPaste fits the confirmation in lam_intra to the

experimental crystal.

Utility Programs

Scan

executed using:

./scan

or:

./scan tor1 tor2 inc

 Where tor1 and tor2 are integers relating to the torsions you want to scan across, in the

order they are given in the input file. if these don't exist, then the default is 1 and 2. "inc"

is the increment of the grid, default is 2.0º.

 all other torsions are set as the midpoint between high and low bounds.

 starting values of torsions are printed at the start of the output, for reassurance, then the

grid representing all Uintra values for the selected torsions, in 2 degree increments, in the

format:

space space tor1_label tor1_val_lbound tor1_val_lbound+inc... tor1_val_hbound

tor2_label tor2_val_lbound Uintra(tor1_val_lbound,tor2_val_lbound) Uintra(tor1_val_lbound,tor2_val_lbound+inc) ...

Uintra(tor1_val_lbound,tor2_val_hbound)

tor2_label tor2_val_lbound+inc Uintra(tor1_val_lbound+2,tor2_val_lbound) Uintra(tor1_val_lbound+2,tor2_val_lbound+inc) ...

Uintra(tor1_val_lbound+2,tor2_val_hbound)

..

tor2_label tor2_val_hbound

For Example:

space space dih22 -125 -122 -120 -118 -116 -114 -112 -110 -108

 dih35 212 13.98293 12.55832 11.29654 10.19761 9.26151 8.48825 7.87783 7.43024 ...

 dih35 214 13.97115 12.54235 11.27639 10.17327 9.23299 8.45555 7.84094 7.38918 ...

 dih35 216 13.97299 12.54000 11.26986 10.16256 9.21809 8.43646 7.81768 7.36173 ...

 dih35 218 13.98844 12.55127 11.27694 10.16546 9.21681 8.43100 7.80803 7.34789 ...

16

 dih35 220 14.01750 12.57615 11.29764 10.18197 9.22914 8.43915 7.81199 7.34767 ...

.....

....

"space space " is included in order to line up the axes when pasted into excel. The label for tor1

(dih22 in this example) must be moved in order to make a surface plot, but is worth retaining in

order to make labelling axes easier.

This code is intended to show the user the real intramolecular energy grid a molecule with the

associated input files will experience in a CP2 minimisation run. LAMs are intended to only be

accurate in the "local" environment, too coarse a grid of LAMs can lead to severe mismatches in

energy as the molecule traverses the surface, which can lead to IFAIL=6 errors from the NAG

E04UFF minimiser. At highly curved LAM points, highly negative energies can be predicted at

medium distances from the LAM; these are currently handled by "if Uintra<0 then Uintra=0",

but non-uniform LAM points that accurately describe the surface at these points would be more

robust, and wouldn't risk excluding those areas.

Python utilities

Proportion_of_failure.py: after a production run, analyses crystals.out to see the types of failures

exhibited, indicating if search ranges need be broader for instance

Plot.py: plots the CrystalPredictor output from Analyse_log.out (if Analyse_log.out isn’t in the

directory then CrystPred_log.out is used). Optionally, add a file “Experimental” with the values

of density and energy for any experimental forms. Example:

17

Scan_plotter.py: plots the output of the scan utility. Example:

CP_to_CO.py: reformats LAMs from CrsytalPredictor format to CrystalOptimizer format.

18

Scaling

Figure 2, Scaling test.

References
Further reading on theory as follows: CrystalPredictor v1

3, 4
, v2

5
 and v2.3

2
. Review

6

19

1
https://www.nag.co.uk/numeric/fl/nagdoc_fl25/pdf/e04/e04uff.pdf.

2
I. Sugden, C. S. Adjiman, and C. C. Pantelides, Acta Crystallogr B 72, 864 (2016).

3
P. G. Karamertzanis and C. C. Pantelides, Mol Phys 105, 273 (2007).

4
P. G. Karamertzanis and C. C. Pantelides, J Comput Chem 26, 304 (2005).

5
M. Habgood, I. J. Sugden, A. V. Kazantsev, C. S. Adjiman, and C. C. Pantelides, J Chem

Theory Comput 11, 1957 (2015).

6
C. C. Pantelides, C. S. Adjiman, and A. V. Kazantsev, Top Curr Chem 345, 25 (2014).

Appendix

NonNAG version

Regarding the nonNAG version of the code:

 Routine for constrained local minimizations. I have used Klaus Schittkowski's routine

NLPQLP. Professor Schittkowski hence needs to be informed if you are giving out the

code to new users, using his routine to make money, etc.

 Use of Numerical Algorithms Group (NAG) libraries. Version 1 made free use of NAG

libraries. As these were cost-prohibitive for many potential users, I have created a version

which dispenses with them. However, the NAG constrained local minimization routine

E04UFF has proven to be faster than NLPQLP. Hence, I have created an alternative

version that calls E04UFF instead (but have not replaced the other NAG routines), for

users that have access to NAG libraries.

Numerical Recipes routines: This code uses modified versions of the NR routines lubksb,

ludcmp, and sort2.

Installation folder

This should contain:

 This Manual

 The CrystalPredictor binaries: CrystPred, Analyse, Minimise, LAM_Generator,

Clustering and scan.

 A folder “Utility_Programs/” containing the python scripts: proportion_of_failure.py,

plot.py, scan_plotter.py, and CP_to_CO.py, as well as the runCrystPred.csh and

runAnalyse.csh runscripts

http://www.nag.co.uk/numeric/fl/nagdoc_fl25/pdf/e04/e04uff.pdf

20

 A folder “Examples” containing the folders benzoic_acid, BMS and ROY. Each contains

rigid_lam_intra for rigid searches with the gas phase conformation and building LAM

databases, and flexible_lam_intra for flexible searches after the LAM database has been

built. It will also include the excprys.pdb, and a folder called output_files/ containing the

output of the CrystPred and Minimise runs and plotty.py.

Software dependencies

The code has been compiled with the intel64 MPI libraries (2018) and the NAG Version

26 libraries, which are required, whilst the version of glibc is 2.17. Please get in contact if there

are environment issues, for instance if OpenMPI libraries are required instead. ldd CrystPred on

cx1:

linux-vdso.so.1

libstdc++.so.6

libmpifort.so.12

libmpi.so.12

libdl.so.2

librt.so.1

libpthread.so.0

libm.so.6

libc.so.6

libgcc_s.so.1

/lib64/ld-linux-x86-64.so.2

